Skip to Main Content
IBM Data Platform Ideas Portal for Customers


This portal is to open public enhancement requests against products and services offered by the IBM Data Platform organization. To view all of your ideas submitted to IBM, create and manage groups of Ideas, or create an idea explicitly set to be either visible by all (public) or visible only to you and IBM (private), use the IBM Unified Ideas Portal (https://ideas.ibm.com).


Shape the future of IBM!

We invite you to shape the future of IBM, including product roadmaps, by submitting ideas that matter to you the most. Here's how it works:


Search existing ideas

Start by searching and reviewing ideas and requests to enhance a product or service. Take a look at ideas others have posted, and add a comment, vote, or subscribe to updates on them if they matter to you. If you can't find what you are looking for,


Post your ideas

Post ideas and requests to enhance a product or service. Take a look at ideas others have posted and upvote them if they matter to you,

  1. Post an idea

  2. Upvote ideas that matter most to you

  3. Get feedback from the IBM team to refine your idea


Specific links you will want to bookmark for future use

Welcome to the IBM Ideas Portal (https://www.ibm.com/ideas) - Use this site to find out additional information and details about the IBM Ideas process and statuses.

IBM Unified Ideas Portal (https://ideas.ibm.com) - Use this site to view all of your ideas, create new ideas for any IBM product, or search for ideas across all of IBM.

ideasibm@us.ibm.com - Use this email to suggest enhancements to the Ideas process or request help from IBM for submitting your Ideas.

IBM Employees should enter Ideas at https://ideas.ibm.com



Status Delivered
Workspace Watson Studio
Created by Guest
Created on Dec 8, 2017

Project based workload mgmt and CPU/GPU Allocation

As we're getting into deep learning & neural network based modeling, there is a need to allow projects or models to benefit from GPU based compute. Today when we provision DSx or WML, we have to pre select a HW config. Thereafter all projects get built on that same instance. As a result everyone gets clumped on the same HW profile.

A model that does simple classification perhaps gets the same performance capability/guarantee as a model that runs ARN. This becomes even more complex as one provisions a GPU enabled HW and deploys DSx on it. The platform has no visibility into the type of hw acceleration available, therefore there are no tuning knobs available to the modeller.

There should be a way for CPU/GPU allocation per model, or a selection that can be provided for low cost compute when needed. Say for eg, we are training images that requires many hyper parameters and data is very rich, but dirty. I might better train on a low cost infra, and then switch to a GPU enabled one when I get to an economic efficiency with cleaner data.

This would make DSx & WML deployment for large enterprise much more energy efficient. Almost like model & deployment based workload management, so a guarantee in performance is provided to those models that need them for training perhaps, or critical online streaming situations. And even segregated by user profile so departments who do light Auto ML / Model Flows type of work are not straining those who are running elaborate programs on the same DSx instance.