This portal is to open public enhancement requests against products and services offered by the IBM Data Platform organization. To view all of your ideas submitted to IBM, create and manage groups of Ideas, or create an idea explicitly set to be either visible by all (public) or visible only to you and IBM (private), use the IBM Unified Ideas Portal (https://ideas.ibm.com).
Shape the future of IBM!
We invite you to shape the future of IBM, including product roadmaps, by submitting ideas that matter to you the most. Here's how it works:
Search existing ideas
Start by searching and reviewing ideas and requests to enhance a product or service. Take a look at ideas others have posted, and add a comment, vote, or subscribe to updates on them if they matter to you. If you can't find what you are looking for,
Post your ideas
Post ideas and requests to enhance a product or service. Take a look at ideas others have posted and upvote them if they matter to you,
Post an idea
Upvote ideas that matter most to you
Get feedback from the IBM team to refine your idea
Specific links you will want to bookmark for future use
Welcome to the IBM Ideas Portal (https://www.ibm.com/ideas) - Use this site to find out additional information and details about the IBM Ideas process and statuses.
IBM Unified Ideas Portal (https://ideas.ibm.com) - Use this site to view all of your ideas, create new ideas for any IBM product, or search for ideas across all of IBM.
ideasibm@us.ibm.com - Use this email to suggest enhancements to the Ideas process or request help from IBM for submitting your Ideas.
IBM Employees should enter Ideas at https://ideas.ibm.com
The typical assignment problem for finding the optimal assignment of a set of components to a set of locations in a system has been widely studied in practical applications. However, this problem mainly focuses on maximizing the total profit or minimizing the total cost without considering component’s failure. In practice, each component should be multistate due to failure, partially failure, or maintenance.
That is, each component has several capacities with a probability distribution and may fail. When a set of multistate components is assigned to a system, the system can be treated as a stochastic-flow network. The network reliability is the probability that d units of homogenous commodity can be transmitted through the network successfully. The multistate components assignment problem to maximize the network reliability is never discussed.
Therefore, this paper focuses on solving this problem under an assignment budget constraint, in which each component has an assignment cost. The network reliability under a components assignment can be evaluated in terms of minimal paths and state-space decomposition.
Subsequently an optimization method based on genetic algorithm is proposed. The experimental results show which proposed algorithm can be executed in a reasonable time.